KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability
نویسندگان
چکیده
Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.
منابع مشابه
Compartmentalized Calcium Signaling in Cilia Regulates Intraflagellar Transport
Intraflagellar transport (IFT) underpins many of the important cellular roles of cilia and flagella in signaling and motility. The microtubule motors kinesin-2 and cytoplasmic dynein 1b drive IFT particles (protein complexes carrying ciliary component proteins) along the axoneme to facilitate the assembly and maintenance of cilia. IFT is regulated primarily by cargo loading onto the IFT particl...
متن کاملIntraflagellar Transport and Cilium-Based Signaling
Cilia are specialized structures that not only play diverse roles in cell motility but also transmit signals to the cytoplasm and nucleus to control gene expression, cell function, animal development, and behavior. Cilia are assembled and maintained by the intraflagellar transport (IFT) machinery, which coordinates rapid, bidirectional transport between the cell body and the distal tip of the c...
متن کاملApico-basal Polarity Determinants Encoded by crumbs Genes Affect Ciliary Shaft Protein Composition, IFT Movement Dynamics, and Cilia Length.
One of the most obvious manifestations of polarity in epithelia is the subdivision of the cell surface by cell junctions into apical and basolateral domains. crumbs genes are among key regulators of this form of polarity. Loss of crumbs function disrupts the apical cell junction belt and crumbs overexpression expands the apical membrane size. Crumbs proteins contain a single transmembrane domai...
متن کاملFlagella and Cilia: The Long and the Short of It
Intraflagellar transport is essential for the assembly and function of cilia and flagella, and recent work shows that intraflagellar transport complexes - or trains - fall into two classes according to length and morphology. How might intraflagellar transport and the size of the trains be involved in flagellar and ciliary length control?
متن کاملA systematic comparison of mathematical models for inherent measurement of ciliary length: how a cell can measure length and volume.
Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that...
متن کامل